Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Lancet Infect Dis ; 22(8): 1142-1152, 2022 08.
Article in English | MEDLINE | ID: covidwho-2307701

ABSTRACT

BACKGROUND: There are few data on the incidence of thrombosis among COVID-19 cases, with most research concentrated on hospitalised patients. We aimed to estimate the incidence of venous thromboembolism, arterial thromboembolism, and death among COVID-19 cases and to assess the impact of these events on the risks of hospitalisation and death. METHODS: We conducted a distributed network cohort study using primary care records from the Netherlands, Italy, Spain, and the UK, and outpatient specialist records from Germany. The Spanish database was linked to hospital admissions. Participants were followed up from the date of a diagnosis of COVID-19 or positive RT-PCR test for SARS-CoV-2 (index date) for 90 days. The primary study outcomes were venous thromboembolic events, arterial thromboembolic events, and death, all over the 90 days from the index date. We estimated cumulative incidences for the study outcomes. Multistate models were used to calculate adjusted hazard ratios (HRs) for the association between venous thromboembolism or arterial thromboembolism occurrence and risks of hospitalisation or COVID-19 fatality. FINDINGS: Overall, 909 473 COVID-19 cases and 32 329 patients hospitalised with COVID-19 on or after Sept 1, 2020, were studied. The latest index dates across the databases ranged from Jan 30, 2021, to July 31, 2021. Cumulative 90-day incidence of venous thromboembolism ranged from 0·2% to 0·8% among COVID-19 cases, and up to 4·5% for those hospitalised. For arterial thromboembolism, estimates ranged from 0·1% to 0·8% among COVID-19 cases, increasing to 3·1% among those hospitalised. Case fatality ranged from 1·1% to 2·0% among patients with COVID-19, rising to 14·6% for hospitalised patients. The occurrence of venous thromboembolism in patients with COVID-19 was associated with an increased risk of death (adjusted HRs 4·42 [3·07-6·36] for those not hospitalised and 1·63 [1·39-1·90] for those hospitalised), as was the occurrence of arterial thromboembolism (3·16 [2·65-3·75] and 1·93 [1·57-2·37]). INTERPRETATION: Risks of venous thromboembolism and arterial thromboembolism were up to 1% among COVID-19 cases, and increased with age, among males, and in those who were hospitalised. Their occurrence was associated with excess mortality, underlying the importance of developing effective treatment strategies that reduce their frequency. FUNDING: European Medicines Agency.


Subject(s)
COVID-19 , Venous Thromboembolism , Venous Thrombosis , COVID-19/epidemiology , Cohort Studies , Humans , Male , SARS-CoV-2 , Venous Thromboembolism/complications , Venous Thromboembolism/epidemiology , Venous Thrombosis/complications
2.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-2194255

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Immunosuppression Therapy/adverse effects , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
3.
Nat Commun ; 13(1): 7169, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2133431

ABSTRACT

Population-based studies can provide important evidence on the safety of COVID-19 vaccines. Here we compare rates of thrombosis and thrombocytopenia following vaccination against SARS-CoV-2 with the background (expected) rates in the general population. In addition, we compare the rates of the same adverse events among persons infected with SARS-CoV-2 with background rates. Primary care and linked hospital data from Catalonia, Spain informed the study, with participants vaccinated with BNT162b2 or ChAdOx1 (27/12/2020-23/06/2021), COVID-19 cases (01/09/2020-23/06/2021) or present in the database as of 01/01/2017. We included 2,021,366 BNT162b2 (1,327,031 with 2 doses), 592,408 ChAdOx1, 174,556 COVID-19 cases, and 4,573,494 background participants. Standardised incidence ratios for venous thromboembolism were 1.18 (95% CI 1.06-1.32) and 0.92 (0.81-1.05) after first- and second dose BNT162b2, and 0.92 (0.71-1.18) after first dose ChAdOx1. The standardised incidence ratio for venous thromboembolism in COVID-19 was 10.19 (9.43-11.02). Standardised incidence ratios for arterial thromboembolism were 1.02 (0.95-1.09) and 1.04 (0.97-1.12) after first- and second dose BNT162b2, 1.06 (0.91-1.23) after first-dose ChAdOx1 and 4.13 (3.83-4.45) for COVID-19. Standardised incidence ratios for thrombocytopenia were 1.49 (1.43-1.54) and 1.40 (1.35-1.45) after first- and second dose BNT162b2, 1.28 (1.19-1.38) after first-dose ChAdOx1 and 4.59 (4.41- 4.77) for COVID-19. While rates of thrombosis with thrombocytopenia were generally similar to background rates, the standardised incidence ratio for pulmonary embolism with thrombocytopenia after first-dose BNT162b2 was 1.70 (1.11-2.61). These findings suggest that the safety profiles of BNT162b2 and ChAdOx1 are similar, with rates of adverse events seen after vaccination typically similar to background rates. Meanwhile, rates of adverse events are much increased for COVID-19 cases further underlining the importance of vaccination.


Subject(s)
COVID-19 , Thrombocytopenia , Thrombosis , Venous Thromboembolism , Humans , SARS-CoV-2 , Spain/epidemiology , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , Thrombocytopenia/epidemiology , Thrombocytopenia/etiology , Thrombosis/epidemiology , Thrombosis/etiology , Vaccination/adverse effects
4.
Front Pharmacol ; 13: 945592, 2022.
Article in English | MEDLINE | ID: covidwho-2117467

ABSTRACT

Purpose: Alpha-1 blockers, often used to treat benign prostatic hyperplasia (BPH), have been hypothesized to prevent COVID-19 complications by minimising cytokine storm release. The proposed treatment based on this hypothesis currently lacks support from reliable real-world evidence, however. We leverage an international network of large-scale healthcare databases to generate comprehensive evidence in a transparent and reproducible manner. Methods: In this international cohort study, we deployed electronic health records from Spain (SIDIAP) and the United States (Department of Veterans Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum DOD, Optum EHR). We assessed association between alpha-1 blocker use and risks of three COVID-19 outcomes-diagnosis, hospitalization, and hospitalization requiring intensive services-using a prevalent-user active-comparator design. We estimated hazard ratios using state-of-the-art techniques to minimize potential confounding, including large-scale propensity score matching/stratification and negative control calibration. We pooled database-specific estimates through random effects meta-analysis. Results: Our study overall included 2.6 and 0.46 million users of alpha-1 blockers and of alternative BPH medications. We observed no significant difference in their risks for any of the COVID-19 outcomes, with our meta-analytic HR estimates being 1.02 (95% CI: 0.92-1.13) for diagnosis, 1.00 (95% CI: 0.89-1.13) for hospitalization, and 1.15 (95% CI: 0.71-1.88) for hospitalization requiring intensive services. Conclusion: We found no evidence of the hypothesized reduction in risks of the COVID-19 outcomes from the prevalent-use of alpha-1 blockers-further research is needed to identify effective therapies for this novel disease.

5.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046308

ABSTRACT

Purpose: Alpha-1 blockers, often used to treat benign prostatic hyperplasia (BPH), have been hypothesized to prevent COVID-19 complications by minimising cytokine storm release. The proposed treatment based on this hypothesis currently lacks support from reliable real-world evidence, however. We leverage an international network of large-scale healthcare databases to generate comprehensive evidence in a transparent and reproducible manner. Methods: In this international cohort study, we deployed electronic health records from Spain (SIDIAP) and the United States (Department of Veterans Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum DOD, Optum EHR). We assessed association between alpha-1 blocker use and risks of three COVID-19 outcomes—diagnosis, hospitalization, and hospitalization requiring intensive services—using a prevalent-user active-comparator design. We estimated hazard ratios using state-of-the-art techniques to minimize potential confounding, including large-scale propensity score matching/stratification and negative control calibration. We pooled database-specific estimates through random effects meta-analysis. Results: Our study overall included 2.6 and 0.46 million users of alpha-1 blockers and of alternative BPH medications. We observed no significant difference in their risks for any of the COVID-19 outcomes, with our meta-analytic HR estimates being 1.02 (95% CI: 0.92–1.13) for diagnosis, 1.00 (95% CI: 0.89–1.13) for hospitalization, and 1.15 (95% CI: 0.71–1.88) for hospitalization requiring intensive services. Conclusion: We found no evidence of the hypothesized reduction in risks of the COVID-19 outcomes from the prevalent-use of alpha-1 blockers—further research is needed to identify effective therapies for this novel disease.

6.
BMJ Open ; 12(4): e057866, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1784829

ABSTRACT

OBJECTIVE: To investigate how trends in incidence of anxiety and depressive disorders have been affected by the COVID-19 pandemic. DESIGN: Population-based cohort study. SETTING: Retrospective cohort study from 2018 to 2021 using the Information System for Research in Primary Care (SIDIAP) database in Catalonia, Spain. PARTICIPANTS: 3 640 204 individuals aged 18 or older in SIDIAP on 1 March 2018 with no history of anxiety and depressive disorders. PRIMARY AND SECONDARY OUTCOMES MEASURES: The incidence of anxiety and depressive disorders during the prelockdown period (March 2018-February 2020), lockdown period (March-June 2020) and postlockdown period (July 2020-March 2021) was calculated. Forecasted rates over the COVID-19 periods were estimated using negative binomial regression models based on prelockdown data. The percentage of reduction was estimated by comparing forecasted versus observed events, overall and by sex, age and socioeconomic status. RESULTS: The incidence rates per 100 000 person-months of anxiety and depressive disorders were 151.1 (95% CI 150.3 to 152.0) and 32.3 (31.9 to 32.6), respectively, during the prelockdown period. We observed an increase of 37.1% (95% prediction interval 25.5 to 50.2) in incident anxiety diagnoses compared with the expected in March 2020, followed by a reduction of 15.8% (7.3 to 23.5) during the postlockdown period. A reduction in incident depressive disorders occurred during the lockdown and postlockdown periods (45.6% (39.2 to 51.0) and 22.0% (12.6 to 30.1), respectively). Reductions were higher among women during the lockdown period, adults aged 18-34 years and individuals living in the most deprived areas. CONCLUSIONS: The COVID-19 pandemic in Catalonia was associated with an initial increase in anxiety disorders diagnosed in primary care but a reduction in cases as the pandemic continued. Diagnoses of depressive disorders were lower than expected throughout the pandemic.


Subject(s)
COVID-19 , Adult , Anxiety/epidemiology , COVID-19/epidemiology , Cohort Studies , Communicable Disease Control , Depression/epidemiology , Female , Humans , Mental Health , Pandemics , Retrospective Studies , SARS-CoV-2 , Spain/epidemiology
7.
Nat Commun ; 13(1): 1678, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1768824

ABSTRACT

Linear mixed models are commonly used in healthcare-based association analyses for analyzing multi-site data with heterogeneous site-specific random effects. Due to regulations for protecting patients' privacy, sensitive individual patient data (IPD) typically cannot be shared across sites. We propose an algorithm for fitting distributed linear mixed models (DLMMs) without sharing IPD across sites. This algorithm achieves results identical to those achieved using pooled IPD from multiple sites (i.e., the same effect size and standard error estimates), hence demonstrating the lossless property. The algorithm requires each site to contribute minimal aggregated data in only one round of communication. We demonstrate the lossless property of the proposed DLMM algorithm by investigating the associations between demographic and clinical characteristics and length of hospital stay in COVID-19 patients using administrative claims from the UnitedHealth Group Clinical Discovery Database. We extend this association study by incorporating 120,609 COVID-19 patients from 11 collaborative data sources worldwide.


Subject(s)
COVID-19 , Algorithms , COVID-19/epidemiology , Confidentiality , Databases, Factual , Humans , Linear Models
9.
BMC Med Res Methodol ; 22(1): 35, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1699687

ABSTRACT

BACKGROUND: We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis using historical data from patients with influenza or flu-like symptoms and tested this in COVID-19 patients. METHODS: We analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients with influenza or flu-like symptoms any time prior to 2020. The first step was to create a data-driven model using LASSO regularized logistic regression, the covariates of which were used to develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. RESULTS: Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved good performance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations with some of the COVID-19 validations being less well calibrated than the influenza validations. CONCLUSIONS: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 COVER models with 9-predictors that were developed using influenza data perform well for COVID-19 patients for predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which transferred well to the COVID-19 population. There was some miscalibration in the COVID-19 validations, which is potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to recalibrate the models in each location before use.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , COVID-19 Testing , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States
10.
Int J Cancer ; 150(5): 782-794, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1607528

ABSTRACT

The relationship between cancer and coronavirus disease 2019 (COVID-19) infection and severity remains poorly understood. We conducted a population-based cohort study between 1 March and 6 May 2020 describing the associations between cancer and risk of COVID-19 diagnosis, hospitalisation and COVID-19-related death. Data were obtained from the Information System for Research in Primary Care (SIDIAP) database, including primary care electronic health records from ~80% of the population in Catalonia, Spain. Cancer was defined as any primary invasive malignancy excluding non-melanoma skin cancer. We estimated adjusted hazard ratios (aHRs) for the risk of COVID-19 (outpatient) clinical diagnosis, hospitalisation (with or without a prior COVID-19 diagnosis) and COVID-19-related death using Cox proportional hazard regressions. Models were estimated for the overall cancer population and by years since cancer diagnosis (<1 year, 1-5 years and ≥5 years), sex, age and cancer type; and adjusted for age, sex, smoking status, deprivation and comorbidities. We included 4 618 377 adults, of which 260 667 (5.6%) had a history of cancer. A total of 98 951 individuals (5.5% with cancer) were diagnosed, and 6355 (16.4% with cancer) were directly hospitalised with COVID-19. Of those diagnosed, 6851 were subsequently hospitalised (10.7% with cancer), and 3227 died without being hospitalised (18.5% with cancer). Among those hospitalised, 1963 (22.5% with cancer) died. Cancer was associated with an increased risk of COVID-19 diagnosis (aHR: 1.08; 95% confidence interval [1.05-1.11]), direct COVID-19 hospitalisation (1.33 [1.24-1.43]) and death following hospitalisation (1.12 [1.01-1.25]). These associations were stronger for patients recently diagnosed with cancer, aged <70 years, and with haematological cancers. These patients should be prioritised in COVID-19 vaccination campaigns and continued non-pharmaceutical interventions.


Subject(s)
COVID-19 Testing/methods , COVID-19/mortality , Adolescent , Adult , Aged , Female , History, 21st Century , Hospitalization , Humans , Male , Middle Aged , SARS-CoV-2 , Spain/epidemiology , Young Adult
11.
BMJ Open ; 11(12): e057632, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1583090

ABSTRACT

OBJECTIVE: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients. DESIGN AND SETTING: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020. PARTICIPANTS: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosed cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, end of the study period or 30 days. OUTCOMES: Demographics, comorbidities and 30-day outcomes (hospitalisation and death for the 'diagnosed' cohort and adverse events and death for the 'hospitalised' cohort) were reported. RESULTS: We identified 2 851 035 diagnosed and 563 708 hospitalised patients with COVID-19. Hypertension was more prevalent in the latter (ranging across databases from 17.4% (95% CI 17.2 to 17.6) to 61.4% (95% CI 61.0 to 61.8) and from 25.6% (95% CI 24.6 to 26.6) to 85.9% (95% CI 85.2 to 86.6)). Patients in both cohorts with hypertension were predominantly >50 years old and female. Patients with hypertension were frequently diagnosed with obesity, heart disease, dyslipidaemia and diabetes. Compared with patients without hypertension, patients with hypertension in the COVID-19 diagnosed cohort had more hospitalisations (ranging from 1.3% (95% CI 0.4 to 2.2) to 41.1% (95% CI 39.5 to 42.7) vs from 1.4% (95% CI 0.9 to 1.9) to 15.9% (95% CI 14.9 to 16.9)) and increased mortality (ranging from 0.3% (95% CI 0.1 to 0.5) to 18.5% (95% CI 15.7 to 21.3) vs from 0.2% (95% CI 0.2 to 0.2) to 11.8% (95% CI 10.8 to 12.8)). Patients in the COVID-19 hospitalised cohort with hypertension were more likely to have acute respiratory distress syndrome (ranging from 0.1% (95% CI 0.0 to 0.2) to 65.6% (95% CI 62.5 to 68.7) vs from 0.1% (95% CI 0.0 to 0.2) to 54.7% (95% CI 50.5 to 58.9)), arrhythmia (ranging from 0.5% (95% CI 0.3 to 0.7) to 45.8% (95% CI 42.6 to 49.0) vs from 0.4% (95% CI 0.3 to 0.5) to 36.8% (95% CI 32.7 to 40.9)) and increased mortality (ranging from 1.8% (95% CI 0.4 to 3.2) to 25.1% (95% CI 23.0 to 27.2) vs from 0.7% (95% CI 0.5 to 0.9) to 10.9% (95% CI 10.4 to 11.4)) than patients without hypertension. CONCLUSIONS: COVID-19 patients with hypertension were more likely to suffer severe outcomes, hospitalisations and deaths compared with those without hypertension.


Subject(s)
COVID-19 , Hypertension , COVID-19 Testing , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Hypertension/epidemiology , Middle Aged , Retrospective Studies , SARS-CoV-2
12.
J Clin Endocrinol Metab ; 106(12): e5030-e5042, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1546810

ABSTRACT

CONTEXT: A comprehensive understanding of the association between body mass index (BMI) and coronavirus disease 2019 (COVID-19) is still lacking. OBJECTIVE: To investigate associations between BMI and risk of COVID-19 diagnosis, hospitalization with COVID-19, and death after a COVID-19 diagnosis or hospitalization (subsequent death), accounting for potential effect modification by age and sex. DESIGN: Population-based cohort study. SETTING: Primary care records covering >80% of the Catalan population, linked to regionwide testing, hospital, and mortality records from March to May 2020. PARTICIPANTS: Adults (≥18 years) with at least 1 measurement of weight and height. MAIN OUTCOME MEASURES: Hazard ratios (HR) for each outcome. RESULTS: We included 2 524 926 participants. After 67 days of follow-up, 57 443 individuals were diagnosed with COVID-19, 10 862 were hospitalized with COVID-19, and 2467 had a subsequent death. BMI was positively associated with being diagnosed and hospitalized with COVID-19. Compared to a BMI of 22 kg/m2, the HR (95% CI) of a BMI of 31 kg/m2 was 1.22 (1.19-1.24) for diagnosis and 1.88 (1.75-2.03) and 2.01 (1.86-2.18) for hospitalization without and with a prior outpatient diagnosis, respectively. The association between BMI and subsequent death was J-shaped, with a modestly higher risk of death among individuals with BMIs ≤ 19 kg/m2 and a more pronounced increasing risk for BMIs ≥ 40 kg/m2. The increase in risk for COVID-19 outcomes was particularly pronounced among younger patients. CONCLUSIONS: There is a monotonic association between BMI and COVID-19 diagnosis and hospitalization risks but a J-shaped relationship with mortality. More research is needed to unravel the mechanisms underlying these relationships.


Subject(s)
Body Mass Index , COVID-19/etiology , COVID-19/mortality , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Mortality , Risk Factors , Spain/epidemiology , Young Adult
13.
Comput Methods Programs Biomed ; 211: 106394, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1437413

ABSTRACT

BACKGROUND AND OBJECTIVE: As a response to the ongoing COVID-19 pandemic, several prediction models in the existing literature were rapidly developed, with the aim of providing evidence-based guidance. However, none of these COVID-19 prediction models have been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software tools can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation, and publicly providing all analytical source code). METHODS: We show step-by-step how to implement the analytics pipeline for the question: 'In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?'. We develop models using six different machine learning methods in a USA claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the USA. RESULTS: Our open-source software tools enabled us to efficiently go end-to-end from problem design to reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. CONCLUSION: Our results show that following the OHDSI analytics pipeline for patient-level prediction modelling can enable the rapid development towards reliable prediction models. The OHDSI software tools and pipeline are open source and available to researchers from all around the world.


Subject(s)
COVID-19 , Pandemics , Humans , Logistic Models , Machine Learning , SARS-CoV-2
14.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1394618

ABSTRACT

OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Comorbidity , Databases, Factual , Diagnosis, Differential , Female , France/epidemiology , Germany/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Male , Republic of Korea/epidemiology , Spain/epidemiology , Symptom Assessment , Time Factors , Treatment Outcome , United States/epidemiology
15.
Int J Obes (Lond) ; 45(11): 2347-2357, 2021 11.
Article in English | MEDLINE | ID: covidwho-1315585

ABSTRACT

BACKGROUND: A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. METHODS: We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. RESULTS: We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8-40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0-33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. CONCLUSION: We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies.


Subject(s)
COVID-19/epidemiology , Obesity/epidemiology , Adolescent , Adult , Aged , COVID-19/mortality , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Male , Middle Aged , Prevalence , Risk Factors , Spain/epidemiology , United Kingdom/epidemiology , United States/epidemiology , Young Adult
16.
JMIR Med Inform ; 9(4): e21547, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1195972

ABSTRACT

BACKGROUND: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the "prediction model risk of bias assessment" criteria, and it has not been externally validated. OBJECTIVE: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases. METHODS: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States, Europe, Australia, and Asia. RESULTS: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor, with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network, the C statistics ranged between 0.40 and 0.68. CONCLUSIONS: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

17.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065706

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

18.
Nat Commun ; 12(1): 777, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1062752

ABSTRACT

The natural history of coronavirus disease 2019 (COVID-19) has yet to be fully described. Here, we use patient-level data from the Information System for Research in Primary Care (SIDIAP) to summarise COVID-19 outcomes in Catalonia, Spain. We included 5,586,521 individuals from the general population. Of these, 102,002 had an outpatient diagnosis of COVID-19, 16,901 were hospitalised with COVID-19, and 5273 died after either being diagnosed or hospitalised with COVID-19 between 1st March and 6th May 2020. Older age, being male, and having comorbidities were all generally associated with worse outcomes. These findings demonstrate the continued need to protect those at high risk of poor outcomes, particularly older people, from COVID-19 and provide appropriate care for those who develop symptomatic disease. While risks of hospitalisation and death were lower for younger populations, there is a need to limit their role in community transmission.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , Comorbidity , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , Risk Factors , SARS-CoV-2/isolation & purification , Sex Factors , Spain/epidemiology , Young Adult
19.
medRxiv ; 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-915986

ABSTRACT

Objectives To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. Design International network cohort. Setting Real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. Participants Diagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measures Baseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. Results A total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. Conclusions Despite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.

20.
medRxiv ; 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-915971

ABSTRACT

Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems' response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

SELECTION OF CITATIONS
SEARCH DETAIL